An interior penalty Galerkin method for the MHD equations in heterogeneous domains
نویسندگان
چکیده
The Maxwell equations in the magnetohydrodynamic (MHD) limit in heterogeneous domains composed of conducting and non-conducting regions are solved by using Lagrange finite elements and by enforcing continuities across interfaces using an Interior Penalty technique à la Baker [Finite element methods for elliptic equations using non-conforming elements, Math. Comp. 31 (137) (1977) 45–59]. The method is shown to be stable and convergent and is validated by convergence tests. It is used to compute Ohmic decay in various compact conducting domains and to simulate the kinematic dynamo action in two different geometries. Published by Elsevier Inc.
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملAn Interior Penalty Method with C Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity
The present paper proposes and analyzes an interior penalty technique using C0-finite elements to solve the Maxwell equations in domains with heterogeneous properties. The convergence analysis for the boundary value problem and the eigenvalue problem is done assuming only minimal regularity in Lipschitz domains. The method is shown to converge for any polynomial degrees and to be spectrally cor...
متن کاملThe Ritz-Galerkin method for MHD Couette flow of non-Newtonian fluid
In this paper, the Ritz-Galerkin method in Bernstein polynomial basis is applied for solving the nonlinear problem of the magnetohydrodynamic (MHD) flow of third grade fluid between the two plates. The properties of the Bernstein polynomials together with the Ritz-Galerkin method are used to reduce the solution of the MHD Couette flow of non-Newtonian fluid in a porous medium to the solution o...
متن کاملSymmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations I: Method Formulation
In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier–Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint sec...
متن کاملAn Interior Penalty Method with C0 Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity
The present paper proposes and analyzes an interior penalty technique using C-finite elements to solve the Maxwell equations in domains with heterogeneous properties. The convergence analysis for the boundary value problem and the eigenvalue problem is done assuming only minimal regularity in Lipschitz domains. The method is shown to converge for any polynomial degrees and to be spectrally corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 221 شماره
صفحات -
تاریخ انتشار 2007